6 research outputs found

    AXES at TRECVid 2011

    Get PDF
    Abstract The AXES project participated in the interactive known-item search task (KIS) and the interactive instance search task (INS) for TRECVid 2011. We used the same system architecture and a nearly identical user interface for both the KIS and INS tasks. Both systems made use of text search on ASR, visual concept detectors, and visual similarity search. The user experiments were carried out with media professionals and media students at the Netherlands Institute for Sound and Vision, with media professionals performing the KIS task and media students participating in the INS task. This paper describes the results and findings of our experiments

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Search for resonances decaying into photon pairs in 139 fb(-1) of pp collisions at root s=13 TeV with the ATLAS detector

    Get PDF
    We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; ANID, Chile; CAS, MOST and NSFC, China; Minciencias, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS and CEA-DRF/IRFU, France; SRNSFG, Georgia; BMBF, HGF and MPG, Germany; GSRI, Greece; RGC and Hong Kong SAR, China; ISF and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; JINR; MES of Russia and NRC KI, Russian Federation; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZS, Slovenia; DSI/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, CANARIE, Compute Canada and CRC, Canada; COST, ERC, ERDF, Horizon 2020 and Marie Sklodowska-Curie Actions, European Union; Investissements d'Avenir Labex, Investissements d'Avenir Idex and ANR, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF, Greece; BSF-NSF and GIF, Israel; Norwegian Financial Mechanism 2014-2021, Norway; La Caixa Banking Foundation, CERCA Programme Generalitat de Catalunya and PROMETEO and GenT Programmes Generalitat Valenciana, Spain; Goran Gustafssons Stiftelse, Sweden; The Royal Society and Leverhulme Trust, United Kingdom. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN, the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NLT1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA), the Tier-2 facilities worldwide and large non-WLCG resource providers. Major contributors of computing resources are listed in Ref.[52].Searches for new resonances in the diphoton final state, with spin 0 as predicted by theories with an extended Higgs sector and with spin 2 using a warped extra-dimension benchmark model, are presented using 139 fb(-1) of root s = 13 TeV pp collision data collected by the ATLAS experiment at the LHC. No significant deviation from the Standard Model is observed and upper limits are placed on the production cross-section times branching ratio to two photons as a function of the resonance mass.ANPCyTYerPhI, ArmeniaAustralian Research CouncilBMWFW, AustriaAustrian Science Fund (FWF)Azerbaijan National Academy of Sciences (ANAS)SSTC, BelarusConselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPQ)Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP)Natural Sciences and Engineering Research Council of Canada (NSERC)NRC, CanadaCanada Foundation for InnovationCERNANID, ChileChinese Academy of SciencesMinistry of Science and Technology, ChinaNational Natural Science Foundation of China (NSFC)Minciencias, ColombiaMinistry of Education, Youth & Sports - Czech Republic Czech Republic Government Czech Republic GovernmentDNRF, DenmarkDanish Natural Science Research CouncilCentre National de la Recherche Scientifique (CNRS)CEA-DRF/IRFU, FranceSRNSFG, GeorgiaFederal Ministry of Education & Research (BMBF)HGF, GermanyMax Planck SocietyGSRI, GreeceRGC, ChinaHong Kong SAR, ChinaIsrael Science FoundationBenoziyo Center, IsraelIstituto Nazionale di Fisica Nucleare (INFN)Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT)Japan Society for the Promotion of ScienceCNRST, MoroccoNetherlands Organization for Scientific Research (NWO)Netherlands GovernmentRCN, NorwayMinistry of Science and Higher Education, PolandNCN, PolandPortuguese Foundation for Science and TechnologyEuropean CommissionMNE/IFA, RomaniaJINRRussian FederationNRC KI, Russian FederationMinistry of Education, Science & Technological Development, SerbiaMSSR, SlovakiaSlovenian Research Agency - Slovenia MIZS, SloveniaDSI/NRF, South AfricaSpanish GovernmentSRC, Sweden Wallenberg Foundation, SwedenSERI, Switzerland Swiss National Science Foundation (SNSF) Canton of Bern, Switzerland Canton of Geneva, SwitzerlandMinistry of Science and Technology, TaiwanMinistry of Energy & Natural Resources - TurkeyUK Research & Innovation (UKRI)Science & Technology Facilities Council (STFC)United States Department of Energy (DOE)National Science Foundation (NSF)BCKDF, Canada CANARIE, Canada Compute Canada, Canada CRC, CanadaCOST, European Union European Research Council (ERC) ERDF, European Union Horizon 2020, European Union Marie Sklodowska-Curie Actions, European UnionFrench National Research Agency (ANR)German Research Foundation (DFG)Alexander von Humboldt FoundationHerakleitos programme - EU-ESF, Greece Thales Group Aristeia programme - EU-ESF, Greece Greek NSRF, GreeceBSF-NSF, IsraelGerman-Israeli Foundation for Scientific Research and DevelopmentNorwegian Financial Mechanism 2014-2021, NorwayLa Caixa Banking Foundation, Spain CERCA Programme Generalitat de Catalunya, Spain PROMETEO Programme Generalitat Valenciana, Spain GenT Programme Generalitat Valenciana, SpainGoran Gustafssons Stiftelse, SwedenRoyal Society of LondonLeverhulme Trus

    The ATLAS Fast TracKer system

    Get PDF
    Abstract: The ATLAS Fast TracKer (FTK) was designed to provide full tracking for the ATLAS high-level trigger by using pattern recognition based on Associative Memory (AM) chips and fitting in high-speed field programmable gate arrays. The tracks found by the FTK are based on inputs from all modules of the pixel and silicon microstrip trackers. The as-built FTK system and components are described, as is the online software used to control them while running in the ATLAS data acquisition system. Also described is the simulation of the FTK hardware and the optimization of the AM pattern banks. An optimization for long-lived particles with large impact parameter values is included. A test of the FTK system with the data playback facility that allowed the FTK to be commissioned during the shutdown between Run 2 and Run 3 of the LHC is reported. The resulting tracks from part of the FTK system covering a limited η–ϕ region of the detector are compared with the output from the FTK simulation. It is shown that FTK performance is in good agreement with the simulation

    Search for new phenomena in three- or four-lepton events in pp collisions at root s=13 TeV with the ATLAS detector

    Get PDF
    We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Ar-menia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbai-jan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; ANID, Chile; CAS, MOST and NSFC, China; Min-ciencias, Colombia; MSMT CR, MPO CR and VSC CR, Czech Repub-lic; DNRF and DNSRC, Denmark; IN2P3-CNRS and CEA-DRF/IRFU, France; SRNSFG, Georgia; BMBF, HGF and MPG, Germany; GSRI, Greece; RGC and Hong Kong SAR, China; ISF and Benoziyo Cen-ter, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; NWO, Netherlands; RCN, Norway; MEiN, Poland; FCT, Portugal; MNE/IFA, Romania; JINR; MES of Russia and NRC KI, Russian Fed-eration; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DSI/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Founda-tion, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzer-land; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, CANARIE, Com-pute Canada and CRC, Canada; COST, ERC, ERDF, Horizon 2020 and Marie Skłodowska-Curie Actions, European Union; Investisse-ments d’Avenir Labex, Investissements d’Avenir Idex and ANR, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF, Greece; BSF-NSF and GIF, Israel; Norwegian Financial Mecha-nism 2014-2021, Norway; NCN and NAWA, Poland; La Caixa Bank-ing Foundation, CERCA Programme Generalitat de Catalunya and PROMETEO and GenT Programmes Generalitat Valenciana, Spain; Göran Gustafssons Stiftelse, Sweden; The Royal Society and Lever-hulme Trust, United Kingdom. The crucial computing support from all WLCG partners is ac-knowledged gratefully, in particular from CERN, the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA), the Tier-2 facilities worldwide and large non-WLCG resource providers. Major contributors of computing resources are listed in Ref.[91].A search with minimal model dependence for physics beyond the Standard Model in events featuring three or four charged leptons (3l and 4l, l = e, mu) is presented. The analysis aims to be sensitive to a wide range of potential new-physics theories simultaneously. This analysis uses data from pp collisions delivered by the Large Hadron Collider at a centre-of-mass energy of root s = 13 TeV and recorded with the ATLAS detector, corresponding to the full Run 2 dataset of 139 fb(-1). The 3l and 4l phase space is divided into 22 event categories according to the number of leptons in the event, the missing transverse momentum, the invariant mass of the leptons, and the presence of leptons originating from a Z-boson candidate. These event categories are analysed independently for the presence of deviations from the Standard Model. No statistically significant deviations from the Standard Model predictions are observed. Upper limits for all signal regions are reported in terms of the visible cross-section.ANPCyT, ArgentinaYerPhI, ArmeniaARC, AustraliaBMWFW and FWF, AustriaANAS, AzerbaijanSSTC, BelarusCNPq and FAPESP, BrazilNSERC, NRC and CFI, CanadaCERNANID, ChileCAS, MOST and NSFC, ChinaMinciencias, ColombiaMSMT CR, MPO CR and VSC CR, Czech RepublicDNRF and DNSRC, DenmarkIN2P3-CNRS and CEA-DRF/IRFU, FranceSRNSFG, GeorgiaBMBF, HGF and MPG, GermanyGSRI, GreeceRGC and Hong Kong SAR, ChinaISF and Benoziyo Center, IsraelINFN, ItalyMEXT and JSPS, JapanCNRST, MoroccoNWO, NetherlandsRCN, NorwayMEiN, PolandFCT, PortugalMNE/IFA, RomaniaJINRMES of Russia and NRC KI, Russian FederationMESTD, SerbiaMSSR, SlovakiaARRS and MIZŠ, SloveniaDSI/NRF, South AfricaMICINN, SpainSRC and Wallenberg Foundation, SwedenSERI, SNSF and Cantons of Bern and Geneva, SwitzerlandMOST, TaiwanTAEK, TurkeySTFC, United KingdomDOE and NSF, United States of AmericaBCKDF, CANARIE, Compute Canada and CRC, CanadaCOST, ERC, ERDF, Horizon 2020 and Marie Skłodowska-Curie Actions, European UnionInvestissements d’Avenir Labex, Investissements d’Avenir Idex and ANR, FranceDFG and AvH Foundation, GermanyHerakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF, GreeceBSF-NSF and GIF, IsraelNorwegian Financial Mechanism 2014-2021, NorwayNCN and NAWA, PolandLa Caixa Banking Foundation, CERCA Programme Generalitat de Catalunya and PROMETEO and GenT Programmes Generalitat Valenciana, SpainGöran Gustafssons Stiftelse, SwedenThe Royal Society and Leverhulme Trust, United Kingdo

    Evidence for Higgs boson decays to a low-mass dilepton system and a photon in pp collisions at s=13 TeV with the ATLAS detector

    Get PDF
    A search for the Higgs boson decaying into a photon and a pair of electrons or muons with an invariant mass mℓℓ<30 GeV is presented. The analysis is performed using 139 fb−1 of proton–proton collision data, produced by the LHC at a centre-of-mass energy of 13 TeV and collected by the ATLAS experiment. Evidence for the H→ℓℓγ process is found with a significance of 3.2 over the background-only hypothesis, compared to an expected significance of 2.1 for the Standard Model prediction. The best-fit value of the signal-strength parameter, defined as the ratio of the observed signal yield to the one expected in the Standard Model, is μ=1.5±0.5. The Higgs boson production cross-section times the H→ℓℓγ branching ratio for mℓℓ<30 GeV is determined to be 8.7−2.7+2.8 fb
    corecore